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A pilot study examining the diet of introduced Alaska
blackfish (Dallia pectoralis T. H. Bean, 1880) in Kenai,
Alaska, by metabarcoding
doi:10.7299/X78052XK

by Matt Bowser1and Apphia Bowser

Figure 1: Panoramic montage of a pond off of the Kenai Spur Highway and Candlelight Drive, the locality from which
blackfish specimens were collected. A full resolution image is available on Arctos (doi:10.7299/X7ZP46FP).

Introduction

Last year we wrote about some food items of the Alaska
blackfish, Dallia pectoralis T. H. Bean, 1880 (Bowser et al.,
2019), a fish species that is native to most of Alaska, but
not the Kenai Peninsula (Eidam et al., 2016; Bowser, 2018).
We wanted to learn more about how these introduced fish
may alter the ecology of Kenai Peninsula waters, especially
how blackfish may affect native fish species through com-
petition for invertebrate prey.

Methods

We collected blackfish under Alaska Department of Fish &
Game permit Number SF2019-111.

On 23 August 2019 we collected blackfish from a small,
shallow pond in Kenai, Alaska (60.5681 °N, -151.1901 °W
± 40 m) (Bowser, 2019), the same pond from which we
had obtained blackfish the previous year (Bowser et al.,
2019). This pond (Figure 1) is fed by a small inlet stream
and its level is maintained by a dam at the outlet, from
which the stream flows through the Kenai Golf Course and
into the Kenai River. There is little open water; most of
the pond is thickly filled with Potamogeton and flocculent

iron bacterial scum. Only one other fish species, a sin-
gle specimen of a nine-spined stickleback (Pungitius pun-
gitius (Linnaeus, 1758), https://www.inaturalist.org/

observations/31561030), was observed in this pond.
We attempted to collect blackfish from other reaches of

the stream below this pond where there would have been
more potential for interaction between blackfish and other
fish species, but found only small, juvenile blackfish down-
stream.

The collected blackfish were placed on ice in a cooler,
transported to the lab, and frozen. Later we thawed
five adult blackfish (Arctos records KNWRObs:Fish:12–
KNWRObs:Fish:16), measured their lengths, dissected out
their entire guts, and squeezed gut contents into vials of
UniGard -100 propylene glycol antifreeze.

Vials of gut contents were shipped to RTL Genomics
in Lubbock, Texas (https://rtlgenomics.com/) for RTL
Genomics’ standard microbial diversity assay using the ml-
COIint/jgHCO2198 (GGWACWGGWTGAACWGTWTAY-
CCYCC/TAIACYTCIGGRTGICCRAARAAYCA) primer
set.

Extraction methods, sequencing methods, and result-
ing raw sequence data are provided in Bowser and Bowser
(2020).

1US Fish & Wildlife Service, Kenai National Wildlife Refuge, Soldotna, Alaska, matt_bowser@fws.gov
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Figure 2: Phylogram of retained ESV sequences. Colors representing major groups are the same as in Figure 3. The tree
can be viewed interactively or downloaded from https://itol.embl.de/tree/16415961276811585237767.
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Raw reads were processed using the SCVUC COI
metabarcode pipeline version 4.3.0 (https://github.com/
Hajibabaei-Lab/SCVUC_COI_metabarcode_pipeline).
This pipline runs SeqPrep (St. John, 2016), CUTADAPT
(Martin, 2011), VSEARCH (Rognes et al., 2016), UNOISE
(Edgar, 2016), and the RDP classifier (Wang et al., 2007) us-
ing the COI Classifier v4 reference dataset (Porter and Ha-
jibabaei, 2018). Processing steps were run via Snakemake
(Köster and Rahmann, 2012). Our SCVUC configuration file
(Bowser, 2020b) and snakefile (Bowser, 2020c) are available
on Arctos.

The resulting exact sequence variants (ESVs) were
also compared to ESVs obtained by Bowser et al. (2020)
(dataset: Bowser, 2020d), sequences from an Alaska terres-
trial arthropod DNA barcode COI reference library (https:
//github.com/mlbowser/AKTerrInvCOILib), and a FASTA
file of sequences from the authors’ LifeScanner (http:
//lifescanner.net/) records (http://www.boldsystems.
org/index.php/Public_SearchTerms?query=DS-BOWSER)
using vsearch --usearch_global. We also submitted
our ESVs to NCBI BLAST (Johnson et al., 2008) and the
BOLD ID Engine (Ratnasingham and Hebert, 2007) searches
and scrutinized the results. We followed the guidlines of
Sigovini et al. (2016) when assigning provisional names.

We removed all reads identified as Dallia pectoralis; Bos
taurus Linnaeus, 1758; and all non-animals. The small
numbers of Bos taurus reads likely came from bovine serum
albumin added during DNA amplification. As a final check
of identifications, we generated a phylogeny of the fil-
tered ESVs using NGPhylogeny.fr, “NGPhylogeny Analyse
- FastME/OneClick” option (Desper and Gascuel, 2002;
Criscuolo and Gribaldo, 2010; Junier and Zdobnov, 2010;
Katoh and Standley, 2013; Lefort et al., 2015; Lemoine et al.,
2019) and examined the tree using iTOL (Letunic and Bork,
2019) (Figure 2). The FASTA file of retained ESV sequences
is available from Arctos (Bowser, 2020a).

To prevent reporting false postive occurrences, we re-
moved occurrences represented by ≤ 0.05% of the total
number of reads of an ESV. Complete analysis details are
provided in Bowser (2020e).

We tried to follow the guidelines of Penev et al. (2017)
by publishing occurrence data on Arctos, which supplies
occurrence data to GBIF. Specimen records, images, and
other related files have been made available via an Arc-
tos project at http://arctos.database.museum/project/
10003367.

Results

The retained 131 Exact Sequence Variants (Figure 2 ) were
represented by 63,172 reads. The ESVs were assigned to 103

uniquely identified food items and 137 occurrence records
of these food items (Arctos records UAMObs:Ento:244406–
UAMObs:Ento:244542). Arthropods represented by 62,166
(98%) of the reads, followed by rotifers (431 reads, 0.7%),
annelid worms (384 reads, 0.6%), molluscs (160 reads,
0.3%), and one species of hydra (Hydra utahensis Hyman,
1931, strain AK12b sensu Martínez et al. (2010), 31 reads,
0.05%). The most abundant groups in terms of read abun-
dances were odonates (32%), dipterans (24%), cladocerans
(20%), ostracods (16%), and copepods (7%) (Figure 3).

Odonata 32%

Diptera 24%

Cladocera 20% Ostracoda 16%

Copepoda 7%

other 1%

ESV abundances by group

Figure 3: Percentages of ESV abundances in blackfish diet
by taxonomic group.

Of the 103 unique identifications, 13 were compara-
tively abundunt, each representing ≥ 1% of the total num-
ber of reads (Figure 4). All of the reads of Aeshna eremita
Scudder, 1866 (Odonata: Aeshnidae), the most abundant
species identified, came from a single blackfish. We de-
tected Aeshna juncea Linnaeus, 1758, the second most abun-
dant species in our samples, from three fish. Ceratopogo-
nidae sp. bfdZotu7 was both abundant and frequent in our
samples, detected in gut contents of four out of five black-
fish.

The relative abundance of each food item in terms of
read abundances varied widely among the five blackfish
individuals. For each fish, a different prey species was the
most abundant food item.

Three of the most abundant ESVs could be associated
with niether described species nor BOLD Barcode Index
Numbers (Ratnasingham and Hebert, 2013). The ESV iden-
tified as Ceratopogonidae sp. bfdZotu7 was 98.71% similar
(p-dist) to a private record on BOLD. The ESV tentatively
identified as Cyprididae sp. bfZotu3 had no close matches
in BOLD or BASTn search results, but the closest matches
(83.99% similarity) were Cyprididae. The ESV identified
as Podocopida sp. bfdZotu12 was closest (95.44% simi-
lar) to a sequence from an ostracod specimen identified
as Podocopida (BOLD processid: OZFWC245-11).
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Figure 4: Read abundances of identified food items from each of five blackfish specimens. Only food items that represented
≥ 1% of the total number of reads were included. The area of each circle is proportional to read abundances.

Some of the ESVs matched DNA barcode sequences
from locally collected entities that had not been associated
with a formally described species. These included Lumbri-
culida sp. BOLD:ADR8620, a lumbriculid worm collected
previously from near Nordic Lake, Soldotna (BOLD proces-
sid: MOBIL6661-18); Lumbriculus sp. BOLD:AAG4731, an-
other lumbriculid worm documented from a temporary
pool in Soldotna (BOLD processid: MOBIL1270-16); and Tri-
choptera sp. SlikokOtu592, an ESV from near Headquarters
Lake documented by Bowser et al. (2020) (Arctos GUID:
UAMObs:Ento:239239).

Seven chironomid species identified from our samples
appeared to be new distribution records for Alaska. These
were Chaetocladius conjugens Brundin, 1947; Chironomus bi-
furcatus Wuelker, Martin, Kiknadze, Sublette & Michiels,
2009; Cladopelma bicarinata (Brundin, 1947); Cricotopus trifas-
ciatus (Meigen, 1813); Dicrotendipes tritomus (Thienemann &
Kieffer, 1916); Orthocladius smolandicus Brundin, 1947; and
Procladius nigriventris (Kieffer, 1924).

Discussion

It appeared that the adult blackfish that we collected
had recently consumed exclusively invertebrates, mostly
arthropods. No DNA from other fish species was detected.
It should be noted, however, that other fish were compar-
atively rare in this pond. A single nine-spined stickleback
was the only other fish documented. It may have been
possible that juvenile blackfish were consumed by adult
blackfish. These would not have been detected because all
blackfish reads were removed from the analysis.

Overall, our results are consistent with other studies of
blackfish diet (Ostdiek and Nardone, 1959; Chlupach, 1975;
Gudkov, 1998; Eidam, 2015; Eidam et al., 2016; Bowser
et al., 2019) which collectively show that the most im-
portant prey groups include cladocerans, ostracods, flies,
dragonflies, snails, caddisflies, and copepods. What sepa-
rates our results from previous studies is that metabarcod-
ing methods yielded much finer identifications, allowing
us to document which species were consumed by blackfish.
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In previous studies, almost all identifications were coarse,
with identifications lumped by orders or even higher-level
groupings.

The variation in abundances of food items across the
five blackfish individuals suggests that these fish are op-
portunistic, consuming whatever invertebrates they find
and not seeking out any particular kind of prey item. It
was surprising that we found none of the food items doc-
umented by Bowser et al. (2019) from blackfish from the
same pond. Some differences in diet might have been ex-
pected due to season variation. Bowser et al. (2019) had
collected blackfish on 18–19 October, two months later than
our 23 August collecting date. Some of the food items doc-
umented by Bowser et al. (2019) were terrestrial wetland
inhabitants that had likely become available to the black-
fish due to flooding at the time. The water level of the
pond was much lower when we sampled in August 2019
due to a warm, dry summer. Even with these differences
in sampling date and water levels, we had expected to doc-
ument at least some of the same species. The observed lack
of overlap of observed prey items between the two studies
supports our conclusion that blackfish are highly oppor-
tunistic.

The rotifer ESVs and other small-bodied invertebrates
we observed may have been prey items of the blackfish or
they may have been eaten by arthropods that were then
eaten by blackfish.

It should be noted that, due to potential biases related
to metabarcoding methods, the relative read abundances
that we report may not be directly related to the relative
proportions of food items in the diets of the blackfish that
we collected (see Deagle et al., 2019, for an overview). Re-
gardless of potential metabarcoding biases due to differ-
ences in recovery and amplification of target DNA across
taxonomic groups, we believe that some of the differences
in the wide range of read abundances that we observed had
to do with how recently prey items had been consumed.
Recent meals in blackfish stomachs would be expected to
have more intact DNA than the remains of food items fur-
ther along in the intestines, where much of the DNA would
have been broken down.

In conclusion, we documented trophic relationships be-
tween Alaska blackfish and their prey at a particular time
and place. To learn more about how blackfish interact
with other fish species, we would like to see similar work
done in waterbodies where there may be more interactions
among fish species. It would also be good to examine di-
ets from a wider range of sizes of blackfish as was done
by Chlupach (1975) and to compare blackfish diets with
diets of other fish species in the same systems to learn
more about potential competition and predation among
fish species.
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