Inventorying arthropods on Tetlin National Wildlife Refuge by next-generation sequencing

Matt Bowser\(^1\), Kristin DuBour\(^2\), Beth Schulz\(^3\), and John Hanson\(^4\)

Ninth annual meeting of the Alaska Entomological Society

January 30, 2016 • Anchorage, Alaska

\(^1\)USFWS Kenai National Wildlife Refuge, Soldotna, Alaska, matt.bowser@fws.gov
\(^2\)USFWS Tetlin National Wildlife Refuge, Tok, Alaska
\(^3\)USFS Pacific Northwest Research Station, Anchorage, Alaska
\(^4\)Research and Testing Laboratory, Lubbock, Texas
Outline

The Taxonomic Bottleneck .. 1

Methods ... 2

- **Design** ... 2
- **Field Methods** .. 3
- **Molecular Methods** ... 4

Results ... 6

Thoughts ... 10

Acknowledgments ... 11

References ... 12
The Taxonomic Bottleneck

Conventional morphology-based identification workflows are ill-suited to routine monitoring of biodiversity [1, 2]
Methods Design

Forest Inventory and Analysis 2014 Tanana Inventory Pilot [3]
Field Methods

- Extensive remote-sense and vegetation data collected at each site [3].
- 24 ft. radius circular plot, 2 sweep net samples (E and W halves of plot, each 84 m²)
Molecular Methods

Primer selection: \textbf{ZBJ-ArtF1c} + \textbf{ZBJ-ArtR2c} \rightarrow 157 \text{ bp} [5]

Graphic modified from Brandon-Mong (2015) [4].
Methods

Samples
- Sequencing [6] illumina MiSeq platform
 - demultiplexing by illumina software

Research and Testing Laboratory
- Galaxy [9–11]
 - Pear Paired-End read merger [7]
 - VSearch dereplication [8]
 - VSearch clustering [8]
 - VSearch search [8]
 - identifications

Sequences from BOLD [12]
- Alaska vicinity COI reference library
Results

- 84 latin names at various levels of taxonomic resolution
- 53 species names
- **118 BINs [13]**
- 1–9 species per plot
- Each species found on 1–12 (4–46%) of plots
- 2–13 BINs per plot
- Each BIN found on 1–12 (4–46%) of plots

Most common species: *Ochlerotatus communis*

Data will be posted on **NCBI SRA** and **Arctos**.
RESULTS

- Araneae (17)
- Diptera (20)
- Lepidoptera (9)
- Hymenoptera (2)
- Hemiptera (3)
- Coleoptera (2)
First collection date (2014) of the Blackberry Skeletonizer (*Schreckensteinia festaliella*) from Alaska (check it).

Image by Peter Buchner (http://bit.ly/1WOE1Iu)

See also *Schreckensteinia* sp. observed in Sitka in 2015 (http://bugguide.net/node/view/197612).
Thoughts

👍 Overall, these methods worked well.

👍 Quick.

👍 Repeatable.

👍 Cheap.

👎 157 bp region used was too short.
 → 313 bp primer set available for illumina platform [4].
 → 658 bp DNA barcode region on PacBio instrument?

👎 PCR/primer bias.

👎 Alaska sequence library needs work.

👎 This is the future of routine monitoring for terrestrial arthropods.
Acknowledgments

• USFS Forest Inventory and Analysis program
 (sample frame design, field work)

• USFWS Alaska Regional Inventory and Monitoring program
 (funding for present sequencing and Alaska regional arthropod
 COI library)

• Derek Sikes, University of Alaska Museum
 (Alaska regional arthropod COI library contributions)

• John Morton, USFWS Kenai National Wildlife Refuge
 (pushing to make this happen)
References

