
Alexandria Wenninger

Introduction/Rationale

Post-fire successional trajectories in Alaskan boreal forests

(Johnstone et al. 2010: Fire, climate change, and forest resilience in interior Alaska)

Introduction/Rationale

trembling aspen

black spruce

EFN-mediated insect herbivore defenseClonal, long-lived

Goal/Objectives


Goal: Characterize differences in boreal Hymenoptera communities across successional time and between post-fire successional trajectories.

Objectives:

- Test the hypothesis that aspen fosters high abundance and diversity of predatory Hymenoptera
- 2. Characterize changes in the boreal hymenopteran community during post-fire succession

Design overview

Number of sites

Successional			
trajectory >		Black	
Stand age ↓	Aspen	Spruce	Mixed
Young	5	4	4
Intermediate	4	4	4

Methods: Hymenoptera sampling

30m

20m

10m

0m

100 sweeps/site

Schematic of pitfall sampling layout. 3 transects, each 10 m apart, sampled every 10m along length.

Х	X	X
Х	Х	X
Х	Х	X
Х	Х	Х

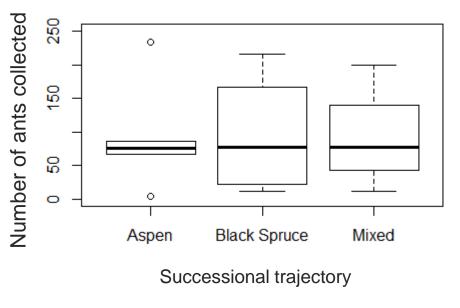
0m 10m 20m

Data analysis

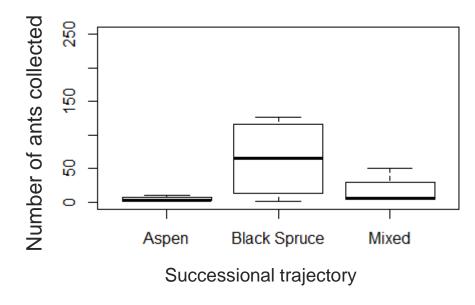
Does aspen foster a higher diversity/abundance/richness of predatory hymenoptera than black spruce?

Do hymenopteran communities vary by age class?

Are there other environmental factors that explain predatory hymenopteran community composition (soil moisture/temperature, understory vegetation, canopy cover, etc.)?

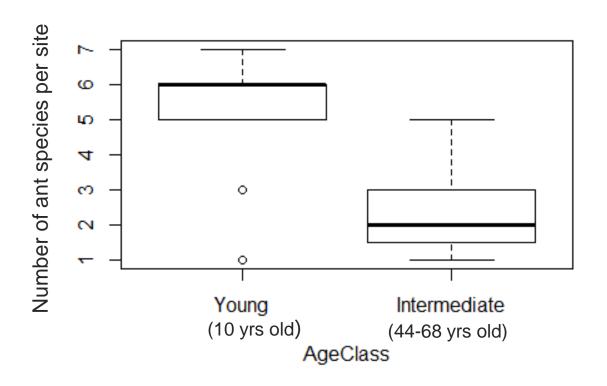

Do ants and parasitoid wasps follow similar patterns across successional trajectories and time?

Preliminary results: ant abundance



Total number of ants collected: 1556

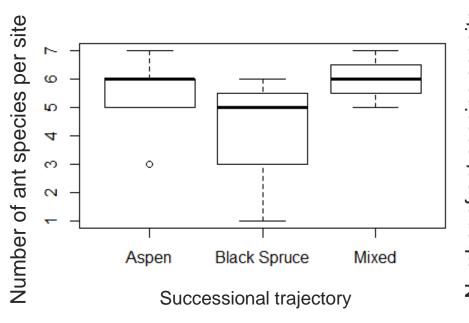
Preliminary results: ant abundance

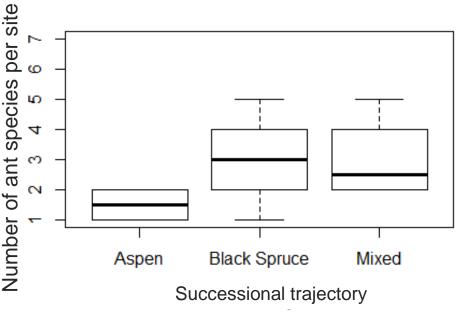


Young (10 yrs since burn)

Intermediate (44-68 yrs since burn)

Preliminary results: ant species richness




Species list:
Myrmica alaskensis
Leptothorax canadensis/
muscorum?
Camponotus herculeanus
Formica aserva
Formica neorufibarbis
Formica subaenescens
Formica podzolica

Preliminary results: ant species prevalence by age class

Young	Species	Intermediate
_	Myrmica alaskensis	63%
51%	Camponotus herculeanus	49%
93%	Formica subaenescens	7%
96%	Leptothorax spp.	4%
96%	Formica aserva	4%
96%	Formica neorufibarbis	4%
96%	Formica podzolica	4%

Preliminary results: ant species richness

Young (10 yrs since burn)

Intermediate (44-68 yrs since burn)

Upcoming tasks

Sample sites in June

Collect site information (understory vegetation, canopy cover, soil and other physical characteristics)

Complete data analysis

This March: Hymenoptera Course

Acknowledgements

Advisor: Diane Wagner

Committee members: Derek Sikes Teresa Hollingsworth

Thank you to Rob Higgins for assistance with ant identification

Ted McHenry Biology Field Research Fund

